Talent.com

Machine learning engineer Jobs in Stuttgart

Jobalert für diese Suche erstellen

Machine learning engineer • stuttgart

Zuletzt aktualisiert: vor 8 Tagen
  • Gesponsert
End-to-End Hydrological Modelling Using Machine Learning : Leveraging Transformers and Opportunistic

End-to-End Hydrological Modelling Using Machine Learning : Leveraging Transformers and Opportunistic

Universität StuttgartStuttgart, Baden-Württemberg, Germany
Civil- and Environmental Engineering.Civil- and Environmental Engineering : IWS - Institute for Modelling Hydraulic and Environmental Systems. The international Doctoral Program Environment Water (E...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
Advanced Analytics & Databricks Expert (all genders)

Advanced Analytics & Databricks Expert (all genders)

MHP - A Porsche CompanyLudwigsburg, Germany
Datenarchitekturen? Du möchtest innovative Datenplattformen gestalten und Kunden bei ihrer digitalen Transformation unterstützen? Dann komm in unser Team und bring dein Know-how in spannenden Proje...Mehr anzeigenZuletzt aktualisiert: vor 9 Tagen
KI / Machine Learning Consultant (m / w / d)

KI / Machine Learning Consultant (m / w / d)

indivHR : We IT RecruitingStuttgart, Baden-Württemberg, .DE
Quick Apply
Willkommen bei indivHR, wo deine Karriere und Individualität an erster Stelle stehen.Wir sind nicht nur Experten im IT Recruiting – wir sind deine persönlichen Karriereberater.HR steht für individu...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
(Senior) ML-Ops Engineer (f / m / d)

(Senior) ML-Ops Engineer (f / m / d)

Cinemo GmbHStuttgart, Germany
Minimum 1 to 2 years of proven experience in ML-Ops, including end-to-end machine learning lifecycle management.Familiarity with MLOps tools like MLFlow, Airflow, Kubeflow or custom implemented sol...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
Senior Data Engineer

Senior Data Engineer

SR2 | Socially Responsible Recruitment | Certified B CorporationStuttgart, DE
Senior Data Engineer – Databricks & AI.Germany (Hybrid : Berlin / Munich / Remote within Germany).We are looking for an experienced. The successful candidate will be responsible for building and opti...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
Praktikum Personalentwicklung - Learning

Praktikum Personalentwicklung - Learning

Lidl Stiftung & Co KGStuttgart, DE
Eine gute Idee war der Ursprung, ein erfolgreiches Konzept ist das Ergebnis.Qualität zum guten Preis möglichst vielen Menschen anbieten zu können treibt uns an - mittlerweile weltweit, denn wir sin...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
E-Learning Specialist / Digital Learning Developer (m|w|d)

E-Learning Specialist / Digital Learning Developer (m|w|d)

Lexzau, Scharbau GmbHStuttgart, Baden-Württemberg, DE
As an owner-managed logistics service provider with Hanseatic roots, the company, founded in 1879, is now at home all over the world. We are where industry and trade need us.We develop tailor-made c...Mehr anzeigenZuletzt aktualisiert: vor 19 Tagen
Consultant • GenAI and Machine Learning (all Levels)

Consultant • GenAI and Machine Learning (all Levels)

UNITY AGStuttgart
Consultant • GenAI and Machine Learning (all Levels).Berufserfahrung (Junior Level).Berufserfahrung (Senior Level).Branchen- / Themenübergreifende Beratungsmandate | Teamgefühl von Tag 1 | Arbeiten a...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
Masterarbeit - Machine Learning : Concept Extraction Validation Benchmark

Masterarbeit - Machine Learning : Concept Extraction Validation Benchmark

FraunhoferStuttgart
Machine Learning (ML) models are reaching a maturity level that allows their operational use in businesses.However, in some areas, this use is limited by their ”black box” nature : the decision-maki...Mehr anzeigenZuletzt aktualisiert: vor 28 Tagen
Senior GenAI / LLM Engineer (w / m / d)

Senior GenAI / LLM Engineer (w / m / d)

SeedboxStuttgart, Baden-Württemberg, DE
Quick Apply
Intro Join Our Team at Seedbox : Innovating for a Better Tomorrow Are you ready to be part of a visionary team that's redefining the landscape of AI-driven innovation? At Seedbox, we are more than j...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
AI Applications Engineer – Machine Learning for Photonic Compute Accelerators (m / f / d)

AI Applications Engineer – Machine Learning for Photonic Compute Accelerators (m / f / d)

Qantas GroupStuttgart, Baden-Württemberg, Germany
We are seeking a talented AI Applications Engineer to join our cutting-edge team developing next-generation photonic compute this role you will design implement and optimize machine learning algor...Mehr anzeigenZuletzt aktualisiert: vor 28 Tagen
Manager Machine Learning / GenAI Engineering (w / m / d)

Manager Machine Learning / GenAI Engineering (w / m / d)

PwCStuttgart, DEU
Für unseren Geschäftsbereich suchen wir dich zum.Manager Machine Learning / GenAI Engineering (w / m / d).Du designst, implementierst und optimierst GenAI Lösungen, Designs und Architekturen im Bereich...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
Principal Data Scientist (m / f / d)

Principal Data Scientist (m / f / d)

ThoughtWorksStuttgart Stuttgart-Mitte, Baden-Württemberg, DE
Principal Data Scientist (m / f / d).Be among the first 25 applicants.Principal Data Scientist (m / f / d).Principal Data Scientists at Thoughtworks are strategic leaders who spearhead data-driven initiati...Mehr anzeigenZuletzt aktualisiert: vor 15 Tagen
  • Gesponsert
Machine Learning Engineer / Data Scientist - Google Cloud (all genders)

Machine Learning Engineer / Data Scientist - Google Cloud (all genders)

adesso SEStuttgart Stuttgart-Mitte, Baden-Württemberg, DE
Du entwickelst moderne, skalierbare Machine Learning-Lösungen auf der Google Cloud.Bewerben Sie sich schnell, lesen Sie die vollständige Beschreibung, indem Sie nach unten scrollen, um die vollstän...Mehr anzeigenZuletzt aktualisiert: vor 9 Tagen
  • Gesponsert
Working Student (m / f / d) Data Science / Machine Learning

Working Student (m / f / d) Data Science / Machine Learning

nexMart & Co. KGStuttgart, Baden-Württemberg, Germany
Data Science / Machine Learning and become part of our Data Platform Team! We the Data Platform Team are responsible for enabling nexmarts data infrastructure and ensuring its performance.We focus on...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
  • Gesponsert
ML Ops Engineer

ML Ops Engineer

KBC Technologies GroupStuttgart, DE
The role involves close collaboration with data scientists and IT teams to ensure secure, efficient, and compliant deployment of ML solutions within complex enterprise environments.Collaborate with...Mehr anzeigenZuletzt aktualisiert: vor 13 Tagen
  • Gesponsert
Pflichtpraktikum in der Powertrain-Funktionsentwicklung durch Machine Learning

Pflichtpraktikum in der Powertrain-Funktionsentwicklung durch Machine Learning

Bosch GroupStuttgart, Baden-Württemberg, Germany
Whrend Ihres Praktikums arbeiten Sie bei der Entwicklung von Powertrain-Funktionen im Bereich der Diesel-Einspritzsysteme um zuknftige Anforderungen zu erfllen. Ihre Ttigkeit umfasst die Detailanaly...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
(Senior) Machine Learning Engineer (f / m / d)

(Senior) Machine Learning Engineer (f / m / d)

MARKT-PILOTStuttgart
Lets scale whats possible! With you!.Were one of Germanys fastest-growing B2B scale-ups.On a mission to bring full market transparency to the world of industrial spare parts.Our software redefines ...Mehr anzeigenZuletzt aktualisiert: vor 8 Tagen
  • Gesponsert
Nachwuchsgruppenleiter •in zur Forschung im Bereich »Physics-Informed Machine Learning for Manuf[...]

Nachwuchsgruppenleiter •in zur Forschung im Bereich »Physics-Informed Machine Learning for Manuf[...]

University of StuttgartStuttgart Stuttgart-Mitte, Baden-Württemberg, DE
Bewerben Sie sich schnell, lesen Sie die vollständige Beschreibung, indem Sie nach unten scrollen, um die vollständigen Anforderungen für diese Stelle zu erfahren. Physics-informed Machine Learning ...Mehr anzeigenZuletzt aktualisiert: vor 15 Tagen
AI Architect

AI Architect

KennedyPearce ConsultingBaden-Württemberg
Our client is seeking a highly skilled and visionary.In this strategic role, you will lead the design and implementation of scalable, secure, and production-ready AI systems, driving innovation acr...Mehr anzeigenZuletzt aktualisiert: vor über 30 Tagen
Häufig gestellte Fragen
Diese Stelle ist in deinem Land nicht verfügbar.
End-to-End Hydrological Modelling Using Machine Learning : Leveraging Transformers and Opportunistic

End-to-End Hydrological Modelling Using Machine Learning : Leveraging Transformers and Opportunistic

Universität StuttgartStuttgart, Baden-Württemberg, Germany
Vor 30+ Tagen
Stellenbeschreibung

Position-ID : 1742

Faculty / Facility :

Civil- and Environmental Engineering

Institute / Facility :

Civil- and Environmental Engineering : IWS - Institute for Modelling Hydraulic and Environmental Systems

Research Association :

N / A

Teaching Obligation :

Application deadline :

10 / 01 / 2025

Anticipated Start Date :

10 / 01 / 2026

About Us

The international Doctoral Program Environment Water (ENWAT) of the Faculty of Civil and Environmental Engineering Sciences University of Stuttgart Germany in collaboration with the German Academic Exchange Service (DAAD) opens a call for max. 2 PhD positions for research in Environment Water. Each project involves high-quality research and state-of-the-art techniques and is supervised by excellent researchers. We are looking for highly motivated and talented students with a passion for science. Candidates must demonstrate an excellent performance in their previous academic education.

Title : End-to-End Hydrological Modelling Using Machine Learning : Leveraging Transformers and Opportunistic Sensor Data for Hydrological Predictions

Advisor : Prof. Dr.-Ing. Wolfgang Nowak apl. Prof. Sergey Oladyshkin Dr. rer. nat. Jochen Seidel

Research group / department :

Chair of Stochastic Simulation and Safety Research for Hydrosystems (LS3)

Institute for Modelling Hydraulic and Environmental Systems (IWS)

Stuttgart Centre for Simulation Technology (SC SimTech)

Keywords : Hydrological modelling Model development Deep learning Transformers Data-driven modelling

Introduction / Background

The majority of hydrological models rely heavily on the principle of mass balance often represented through Ordinary Differential Equations (ODEs). These models encapsulate the conservation of mass within hydrological systems ensuring that the inflows outflows and storage changes are accurately accounted for. This fundamental principle coupled with assumed relationships between various components of the hydrological cycle (such as precipitation evapotranspiration runoff and infiltration) forms the core of traditional hydrological modeling approaches. Although powerful these models often use simplified linearized assumptions limiting their capacity to capture the nonlinear complexities inherent in real-world hydrological processes.

Recently there has also been the branch of neural hydrology where hydrological models are directly learned from data via machine learning (e.g. LSTM neural networks 1). Initially these models ignored all physical background knowledge and did not necessarily conserve mass as they used black-box model structures far away from that of rainfall-runoff models. For these reasons neural hydrology is often criticized by the conventional hydrological community. Alternatively it is well known that Neural ODEs 2 are capable of representing dynamic systems that are coded in ODEs. They can encapsulate the complex temporal dependencies and dynamics inherent in hydrological systems offering a promising direction for integrating machine learning with physical modeling. The potential of neural ODE models in hydrology has been discussed in 3.

Nevertheless both conventional hydrological approaches and neural hydrology typically depend on interpolated input data e.g. precipitation. Real-world data are often sparse and primarily obtained from meteorological stations and occasionally supplemented by opportunistic sensors. The integration of diverse opportunistic sensor data sources 4 such as private weather stations further broadens the capability of hydrological models to reliably forecast extreme hydrological events. However these data sets must initially undergo interpolation before integration into hydrological models.

Current research is developing combining Transformers 5 with Neural ODEs resulting in an end-to-end modelling framework. Transformers are particularly effective at capturing complex long-range spatiotemporal dependencies within heterogeneous and opportunistic sensor networks. Therefore such an approach may significantly improve rainfall and runoff predictions.

References

1. Kratzert F. Klotz D. Brenner C. Schulz K. & Herrnegger M. Rainfallrunoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences 22(11) 6005-6022. (2018).

2. Chen R. T. Rubanova Y. Bettencourt J. & Duvenaud D. K. Neural ordinary differential equations. Advances in Neural Information Processing Systems 31. (2018).

3. Hge M. Scheidegger A. Baity-Jesi M. Albert C. & Fenicia F. Improving hydrologic models for predictions and process understanding using neural ODEs.

  • Hydrology and Earth System Sciences
  • 26(19) 5085-5102. (2022).

4. Brdossy A. Seidel J. & El Hachem A. (2021). The use of personal weather station observations to improve precipitation estimation and interpolation. Hydrology & Earth System Sciences 25(2) 583601

5. Meo C. et al. (2024). Extreme precipitation nowcasting using transformer-based generative models. ICLR Workshop : Tackling Climate Change with Machine Learning.

Your Tasks

Research goals :

Our primary goal is to improve the accuracy and prediction reliability of hydrological models through an innovative end-to-end modelling framework. Specifically we aim to develop and evaluate a novel hybrid model that combines Transformers with Neural ODEs integrating both data-driven machine learning techniques and established physical hydrological principles. This novel hybrid approach should be then rigorously validated and compared against conventional hydrological modelling methods that explicitly use interpolation to pre-process precipitation addition the research should explore the integration of opportunistic sensor data to improve forecast performance particularly during extreme events addressing limitations inherent in traditional meteorological monitoring networks.

Methods to be used :

The research will focus on the integration of Transformer architectures 5 and Neural ODEs 2 creating a cohesive end-to-end hydrological model. Transformers will be utilized to pre-process and analyse the raw input data capturing essential spatial and temporal relationships in rainfall data. Neural ODEs (or initially more traditional hydrological models like HBV) will then enforce physically consistent mass balances to translate the pre-processed rainfall into runoff reliably. These methodologies will be employed to model dynamic systems where the dependencies between state variables and their temporal evolution will be the Neural ODEs state variables will be defined similarly to those in existing conceptual hydrological rainfall-runoff models such as HBV. However the storage terms and fluxes as functions of the current model states will be learned using Neural ODEs which inherently follows the principle of mass balance but have more flexibility in matching the complex rainfall-runoff relation. To validate and test the proposed hybrid framework selected case studies will be implemented and compared against suitable baseline models such as standard HBV with traditional rainfall interpolation. The selection of methods and case studies will be tailored to identify the most effective combination for addressing the challenges posed by the proposed research. This methodological flexibility is crucial for optimizing the models performance and ensuring its applicability to real-world hydrological systems.

Your Profile

Prerequisites :

  • MSc in hydrology environmental sciences hydrogeology water management (or similar) or in data sciences statistics applied mathematics.
  • Skills in programming (e.g. python matlab julia)
  • Skills at scientific writing and presentation
  • Ability to work independently and in a team
  • Willingness to learn new concepts and methods
  • Experience (e.g. coursework thesis work) in hydrological modelling or in machine learning
  • Willingness to contribute to the goals and culture of the research group
  • Further Prerequisites :

  • Resume / CV showing the applicants background professional skills a list of publications and oral and poster presentations as well as additional achievements (scholarships awards etc.)
  • Dipl.-Ing. or equivalent degree in Civil Engineering Water Resources Management Environmental Engineering or related sciences
  • in Civil Engineering Water Resources Management Environmental Engineering or related sciences
  • Copies of Certificates and Transcripts including all undergraduate level certificates and university degrees. All documents which are not in English or in German must be accompanied by copies of a legally certified English translation (for the application we will accept copies; but please be aware that originals or legally certified copies will be needed for the final case any differences between the copies and the originals show up the application will be dismissed.)

    Please make sure that the copies of the transcripts show not only the grades but also explain the home grades system (please add copy of the description of grade scale ).

  • At the time of nomination to the DAAD (Dec 2025) generally no more than 6 years should have passed since the last degree was gained.
  • Only international (non-German) applicants can be accepted. At the time of nomination to the DAAD (Dec 2025) the candidate must not have been resident in Germany for more than the last 15 months .
  • Unless native speaker : proficiency in English (e.g. TOEFL IELTS etc.) or proof that . and . programs were held in English.
  • 2 Reference letters from university professors from the applicants home university issued during the last 2 years.
  • Motivation letter describing the applicants work experience and research goals (1 page)
  • Summary of all relevant information about the applicant (1 page) - please upload it in the slot designated for the third reference.
  • Your Benefits

    Research Environment :

    This research will be embedded into the Chair of Stochastic Simulation and Safety Research for Hydrosystems (LS3) at the IWS Faculty of Civil and Environmental Engineering. Depending on qualification of the candidate a formal association of the project to the SC SimTech Science is possible.

    Employment and compensation information

    Maximal Funding Period or Duration of Employment : 48 months

    Type of Funding : Scholarship

    Compensation : 1300 per month

    Percentage of weekly working hours (usually 39.5h 100%) : 100%

    Employment at the cooperation partner :

    Location : Stuttgart Campus Vaihingen

    If Location other than Stuttgart or additional location(s) : N / A

    Contact Details

    Contact person : Dr. Gabriele Hartmann

    Mail : Phone : 49 5

    Website : targetblank>

    Not translated in selected language

    Key Skills

    Bootstrap,CSS,Front-End Development,HTML5,React,Redux,Node.js,Angular,Less,JavaScript,backbone.js,Sass

    Employment Type : Full Time

    Experience : years

    Vacancy : 1